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Abstract
Consider the random partitioning model of a population (represented by a stick
of length 1) into n species (fragments) with identically distributed random
weights (sizes). Upon ranking the fragments’ weights according to ascending
sizes, let Sm:n be the size of the mth smallest fragment. Assume that some
observer is sampling such populations as follows: drop at random k points (the
sample size) onto this stick and record the corresponding numbers of visited
fragments. We shall investigate the following sampling problems: (1) what is
the sample size if the sampling is carried out until the first visit of the smallest
fragment (size S1:n)? (2) For a given sample size, have all the fragments of the
stick been visited at least once or not? This question is related to Feller’s
random coupon collector problem. (3) In what order are new fragments
being discovered and what is the random number of samples separating the
discovery of consecutive new fragments until exhaustion of the list? For this
problem, the distribution of the size-biased permutation of the species’ weights,
as the sequence of their weights in their order of appearance is needed and
studied.

PACS numbers: 02.50.−r, 87.23.Cc

1. Introduction

Random division models of a population into a (possibly large) number n of species, fragments
or valleys with random weights or sizes have received considerable attention in various domains
of applications.

In disordered systems’ physics, it was first recognized as an important issue in [4],
as a result of phase space (in iterated maps or spin glass models at thermal equilibrium)
being typically broken into many valleys, or attraction basins, each with random weight (see
also [1], chapter 4, participation ratios). Problems involving the breakdown or splitting
of some item into random component parts or fragments, also appear in many other
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fields of interest: for example, the composition of rocks into component compounds in
geology (splitting of mineral grains or pebbles), the composition of biological populations
into species or the random allocation of memory in computer sciences, but also models
for storage and search, gene frequencies in population genetics [14] and biological
diversity [16].

All these applications are concerned with randomly broken objects and random splitting
(see also [9], pp 25, 30 for further motivations in physics involving collision processes and
absorption of light through randomly distributed spheres). Considering the random weights of
the various species must sum to 1, by normalization, the typical phase space of these models
is the interval of unit length, randomly split in such a way that the fragments’ masses, sizes
or energies must sum to 1. The random structure of the population is then characterized by
the ranked sequence of fragments’ weights or sizes. This was observed in [4] (in the large n
thermodynamic limit, i.e., with a denumerable number of fragments).

There are, of course, many ways to break the interval at random into n pieces and so
we have to be more specific. We shall focus here on the simplest ‘fair’ statistical model for
splitting the interval into a finite number n of fragments, obtained from the following well-
known random fragmentation construction: throw at random n − 1 points on a stick of unit
length and consider the induced random division of this stick into n fragments with lengths
the distance between consecutive points. Call Sm,n,m = 1, . . . , n, the length (weight) of the
mth piece. Then, although the sizes Sm,n,m = 1, . . . , n of each fragment all share the same
distribution, the population structure turns out to be far from trivial as there are obviously
fragments that are more or less long. We shall call Sm:n,m = 1, . . . , n the ranked sequence of
fragments’ lengths according to S1:n � · · · � Sn:n. Results on this specific random partition
model and on the ranking procedure that are needed in the following are briefly recalled in
section 2.

Suppose some population is split at random in this way into species numbered from 1 to
n with corresponding random weights. Assume some observer wishes to sample this species’
population. In the sampling process, the larger the weight Sm,n of a species, the more likely
the observer is to meet the corresponding species m. Thus, the sampling process can naturally
be modelled as follows: throw at random k points on the unit stick and carefully note the
numbers of visited fragments. Then these numbers constitute the observer’s observations and
k is the sample size.

Various sampling problems then naturally arise, some of which can be formulated as
follows. Does the k-sample contain the same fragment twice (or more) by some coincidence?
Have all fragments been visited or are there any undiscovered ones left in the k-sample? For
deterministic partitions of the stick, these questions are known in the statistical literature as
Feller’s ‘birthday’ and ‘coupon collector’ sampling problems (in an attempt to answer the
following everyday-life questions: what is the number of students needed in a class so that
two students have the same birthday or so that the students in this class were born every day
of the year with n = 365). It is also of interest to count the number of fragments in the
k-sample with exactly r representatives (the so-called fragments’ vector count), and ask what
is known about its Ewens-sampling distribution (a problem first propounded by [7] in the
context of Poisson–Dirichlet distributions [5])? When r = 0, this quantity is of particular
interest in the applications; for example, in the Poincaré bombing problem when k-bombs are
thrown at random on n districts of a city with random sizes, it interprets as the number of
unbombed districts in a scattered shot. In geology (biology), it is the number of unobserved
compounds (species) in the sampling process of a finite random partition of rocks (populations).
These important problems will be considered elsewhere in this partition context and related
ones.
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Other related sampling problems of interest which constitute the main body of this work
are the following.

(1) What is the sample size till the first visit to the smallest fragment of the partition whose
length is S1:n? This problem is addressed in section 3, the result being proposition 1
where the distribution function of this random variable is given.

(2) In what order are new fragments being discovered and what is the time separating
the discovery of consecutive new fragments until they have all been exhausted? One
intuitively expects these times to be increasing while approaching complete exhaustion
of the list. These problems are addressed in sections 5 and 6. Our main results are
summarized in theorems 8 and 10 where the distributions of these random waiting times
are computed. For the last fragment to be discovered on the list, results on the sample
size needed to visit all fragments are required.

For this last question, the distribution of the size-biased permutation of the fragments’
lengths is needed: indeed, to avoid revisiting many times the firstly encountered species, we
must remove it from the population once it has first been met in the sampling process and
this requires an estimation of its weight. This process is described in section 4.1 with results
displayed in proposition 3 and corollary 4. Once this is done, renormalizing the weights of
the remaining species, we are left with a population with n− 1 species, the sampling of which
will necessarily supply a so far undiscovered species in the next step. Its weight can itself be
estimated and so on, renormalizing again, until the whole available population species have
been visited. This iterative process is described in section 4.2. It leads to the size-biased
permutation of the species weights as the sequence of proportions of species in their order of
appearance in a process of random sampling from the population. Thus, not only the visiting
order of the different species can be understood but also their weights. Needed results on the
weights of the size-biased permutation under our hypothesis are summarized in theorems 5
and 6 of section 4.

2. Preliminaries: the lengths of the pieces of a stick broken at random

Results on the population structure presented in this section are standard and can be found for
example in [17, 3].

Consider n − 1 independent identically distributed uniform draws (X1, . . . , Xn−1) on the
interval [0, 1]. Putting this random vector into order, let (X1:n, . . . , Xn−1:n) be the ordered
version of (X1, . . . , Xn−1) meaning 0 � X1:n � · · · � Xm:n � · · · � Xn−1:n � 1. Define
the spacings between consecutive values by Sm,n := Xm:n − Xm−1:n,m = 2, . . . , n − 1. With
S1,n := X1:n and Sn,n := 1 − Xn−1:n defining spacings at the endpoints, we are left with
a partition of the interval [0, 1] into n fragments with lengths Sn := (Sm,n; m = 1, . . . , n)

satisfying
∑n

m=1 Sm,n = 1. These have common distribution function ([9], p 22)

FSm,n
(s) := P(Sm,n > s) = (1 − s)n−1 s ∈ (0, 1) (1)

independent of m, and so Sm,n
d= Sn (equality in distribution). Such spacings are thus

identically distributed with common distribution that of a beta random variable with parameters

1 and n − 1. We shall put Sm,n
d= Sn

d= beta(1, n − 1).

(Recall that a random variable, say Bα,β , with Bα,β
d= beta(α, β), has density function

fBα,β
(x) := �(α+β)

�(α)�(β)
xα−1(1 − x)β−1; α, β > 0; x ∈ [0, 1] and moment function EBλ

α,β =
�(α+λ)�(α+β)

�(α)�(α+β+λ)
, with �(α) the Euler gamma function.)
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This particular partition model therefore is one of splitting equitably a unit stick into
statistically equal parts.

The sequence (Sm:n; m = 1, . . . , n) is obtained by ordering the fragments’ sizes
(Sm,n; m = 1, . . . , n), i.e., with S1:n � · · · � Sn:n. With x+ := max(x, 0), the distribution
function of Sm:n is known to be [19]

FSm:n (s) =
n∑

q=m

n∑
p=n−q

(−1)p+q−nn!

(n − q)!(n − p)!(q + p − n)!
(1 − ps)n−1

+ .

From this, FSn:n (s) := P(Sn:n � s) = ∑n
p=0(−1)p

(
n

p

)
(1 − ps)n−1

+ and FS1:n (s) :=
1 − FS1:n (s) = (1 − ns)n−1

+ are the largest and smallest fragment size distributions for this
partition. (Note the singular character of Sn:n’s distribution as underlined in [4].) As a result,

one may prove that n
log n

Sn:n
a.s.→ 1, n2S1:n

d→ exp(1) showing (see [11], p 297) that Sn:n and

S1:n are of order log n

n
and n−2, respectively, as n becomes large.

Although the division of the stick is fair in this random partition model, a high statistical
variability of the fragments’ sizes emerges in the thermodynamic limit.

3. The sample size till the first visit to the smallest fragment

In this section, we first model the sampling sieve process which seems to be relevant to our
purposes, in an attempt to formalize the sentence: ‘the larger the weight Sm,n of a species is,
the more likely is the observer to meet the corresponding species m’. Then, the problem of the
sample size needed till the first visit to the smallest fragment of the partition is investigated.

Let Sn be the random partition of the interval into n fragments discussed above. Let k � 1
and (U1, . . . , Uk) be k independent and identically distributed (i.i.d.) uniform random sample
throws on [0, 1]. Let then (M1, . . . ,Mk) be the i.i.d. corresponding fragment numbers (the
observer’s observations). Then, their common conditional and unconditional distributions are
given by

P(M = m | Sn) = Sm,n m ∈ {1, . . . , n} (2)

and

P(M = m) := E[P(M = m | Sn)] = ESm,n = 1

n
(3)

which is consistent with our requirements. With I(·) the set-indicator function, let
Bn,k(m, Sn) = ∑k

l=1 I(Ml = m | Sn) count the random number of occurrences of fragment
m in the k-sample conditionally given Sn. With

∑n
m=1 Bn,k(m, Sn) = k, the random

variable Bn,k(m, Sn) has binomial distribution, i.e., Bn,k(m, Sn)
d= bin(Sm,n, k) for which

P(Bn,k(m, Sn) = b) = (k
b

)
Sb

m,n(1 − Sm,n)
k−b, b = 0, . . . , k.

Let us now come to the sampling problem: what is the sample size that is needed till the
first visit to the smallest fragment of the partition?

With Bn,k(m) = ∑k
l=1 I(Ml = m) the random number of occurrences of fragment m in

the k-sample, let Kn(m) := inf(k : Bn,k(m) = 1) be the waiting time till the first visit to
fragment m . Clearly, conditionally given Sn, we have

P(Kn(m) > k | Sn) = P(Bn,k(m, Sn) = 0) k � 1.

As Bn,k(m, Sn)
d= bin(Sm,n, k), we have

P(Kn(m) > k | Sn) = (1 − Sm,n)
k
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and so Kn(m) is geometrically distributed conditionally given Sn. For our purpose, let
m1:n = arg min

m=1,..., n

(Sm,n) be the number of fragments with smallest size. Then

P(Kn(m1:n) > k | Sn) = (1 − S1:n)
k

is the conditional waiting time till the first visit to this fragment. Averaging over the partitions
Sn, we obtain

P(Kn(m1:n) > k) := EP(Kn(m1:n) > k | Sn) = E[(1 − S1:n)
k].

In the uniform partition, F S1:n(s) = (1 − ns)n − 1
+ , so P[(1 − S1:n)

k > s] = 1 − (1 − n(1 −
s1/k))n−1

+ . As a result, with k � 1, we get

P(Kn(m1:n) > k) = 1 −
∫ 1

0
(1 − n(1 − s1/k))n−1

+ ds

= 1 −
∫ 1

(1− 1
n
)k
(1 − n(1 − s1/k))n−1 ds

= 1 − k

n

(
1 − 1

n

)k−1 ∫ 1

0
xn−1

(
1 +

x

n − 1

)k−1

dx

= 1 − k

n

(
1 − 1

n

)k−1 k−1∑
j=0

(
k − 1

j

)
(n − 1)−j (n + j)−1.

So, we proved

Proposition 1. For a stick broken at random, the probability distribution of the waiting time
till the first visit to the smallest fragment reads

P(Kn(m1:n) � k) = k

n

(
1 − 1

n

)k−1 k−1∑
j=0

(
k − 1

j

)
(n − 1)−j (n + j)−1 k � 1

with P(Kn(m1:n) = 1) = 1
n2 = ES1:n.

4. Sampling and size-biased permutation of the fragments

Consider the problem of determining the order in which the various species will be discovered
in the sampling process. In order to avoid revisiting many times the same species once it
has been discovered, we would like to remove it from the population as soon as it has been
met in the sampling process. But to do that, an estimation of its weight is needed. This is
possible as is shown in section 4.1 for the first visited species. Once this is done, after some
renormalization of the remaining species’ weights, we are left with a population of n − 1
species, the sampling of which will necessarily supply a so far undiscovered species. Its
weight can itself be estimated and so forth, renormalizing again, until the whole available
population species have been visited. This process is described in section 4.2. In this way, not
only the visiting order of the different species can be understood but also their weights. The
purpose of this section is to describe the statistical structure of the size-biased picked species’
weights obtained while avoiding those previously encountered. This, among other things, will
prove useful to solve the second problem on the sample sizes needed to discover consecutive
new fragments.

Let Sn := (S1,n, . . . , Sn,n) be the random partition of the interval [0, 1] considered here

with Sm,n
d= Sn

d= beta(1, n − 1),m = 1, . . . , n,
∑

m Sm,n = 1.
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Let U be a uniformly distributed random throw on [0, 1] and Ln := Ln(U), the length of
the interval of the random partition containing U. The distribution of Ln is characterized by
the conditional probability

P(Ln = Sm,n | Sn) = Sm,n.

In this size-biased picking procedure, long intervals are favoured and one expects that Ln � Sn

in the following stochastic ordering sense.

Definition 2. The random variable Ln is said to be stochastically larger than Sn (and we put
Ln � Sn) if

FSn
(s) � FLn

(s) ∀s ∈ [0, 1].

Let us check that the size-biased pick is stochastically larger than the typical fragment’s
length in the uniform spacings case.

4.1. The length of the first size-biased pick

From the size-biased picking construction, it follows [6] that for all non-negative test functions
f on [0, 1],

E[f (Ln)/Ln] = E[E[f (Ln)/Ln | Sn]]

= E

[
n∑

m=1

f (Sm,n)/Sm,nP(Ln = Sm,n | Sn)

]
= E

[
n∑

m=1

f (Sm,n)

]
. (4)

Taking in particular f (x) = xI (x > s) in (4), we get

FLn
(s) = E

n∑
m=1

Sm,nI(Sm,n > s)

which is

FLn
(s) =

n∑
m=1

∫ 1

s

t dFSm,n
(t) = n

∫ 1

s

t dFSn
(t). (5)

Proposition 3. It holds that

Ln � Sn

Proof. The condition FSn
(s) � FLn

(s) holds for all s in [0, 1] because this is equivalent
to saying that

∫ 1
s

t dFSn
(t)/F Sn

(s) � E(Sn) which is always true because the left-hand side
is the conditional expectation of Sn given Sn > s, certainly larger than E(Sn) itself. As

Sn
d= beta(1, n − 1), this can be checked directly. Indeed, we obtain

FLn
(s) = ((n − 1)s + 1)(1 − s)n−1 (6)

showing that Ln
d= beta(2, n− 1), with ELn = 2/(n + 1). One may then check that: Ln � Sn,

observing that FLn
(s) = ((n − 1)s + 1)(1 − s)n−1 � FSn

(s) = (1 − s)n−1,∀s ∈ [0, 1]. �

This apparent paradox (discussed in [9], pp 22–23 and worked out in [11], pp 294–95)
may be understood by observing that in the size-biased picking procedure, long intervals are
favoured. It constitutes the version on the interval of the standard waiting-time paradox on the
half-line [13]. As a corollary, the following decomposition holds ([2]):
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Corollary 4. Let Bn be a Bernoulli random variable with parameter 1
n

and U a uniform
random variable on [0, 1], independent of Bn . Then, with Rn a [0, 1]-valued random variable
with distribution

Rn
d= Bn + (1 − Bn)U

the following decomposition holds

RnLn
d= Sn

where Rn and Ln are independent.

Proof. Since P(Bn = 1) = 1/n, we have ER
q
n = 1

n
+
(
1 − 1

n

)
1

1+q
. Taking f (x) = xq+1 in

(4), the moment function of Ln reads (q > −2)

E
[
Lq

n

] = E

[
n∑

m=1

Sq+1
m,n

]
= nE

[
Sq+1

n

] = �(n + 1)�(q + 2)

�(n + q + 1)

recalling that E
[
S

q
n

] = �(n)�(q+1)

�(n+q)
is the common moment function of Sm,n,m = 1, . . . , n, with

ESn = 1/n. So, E
[
S

q
n

] = n+q

n(q+1)
E
[
L

q
n

] = ER
q
nE
[
L

q
n

]
. �

4.2. Size-biased permutation of the fragments

Consider the random partition Sn. Let L1,n := Ln be the first size-biased pick (SBP) just
discussed for the first randomly chosen fragment M1 := M , so with L1,n := SM1,n. A standard
problem is to iterate the size-biased picking procedure, by avoiding the fragments already
encountered: by doing so, a size-biased permutation of the fragments is obtained. We would
like to study this process here as it will prove useful in the following.

In the first step of this size-biased picking procedure,

Sn := S(0)
n → (L1,n, S1,n, . . . , SM1−1,n, SM1+1,n, . . . , Sn,n)

which may be written as Sn → (
L1,n, (1 − L1,n)S

(1)

n−1

)
, with

S(1)
n−1 := (S(1)

1,n, . . . , S
(1)
M1−1,n, S

(1)
M1+1,n, . . . , S

(1)
n,n

)
a new random partition of the unit interval into n − 1 random fragments.

Given L1,n
d= beta(2, n−1), the conditional joint distribution of the remaining components

of Sn is the same as that of (1 − L1,n)S
(1)

n−1 where the (n − 1)-vector S(1)

n−1 has the distribution

of a uniform random partition into n − 1 fragments. Pick next at random an interval in S(1)
n−1

and call L2,n its length, now with distribution beta(2, n − 2), and iterate until all fragments
have been exhausted.

With L1,n := L1,n, the length of the second SBP by avoiding the first reads

L2,n = (1 − L1,n)L2,n.

Iterating, the final SBP vector is Ln := (L1,n, . . . , Ln,n).
From this construction, if (L1,n, . . . ,Ln−1,n) is an independent vector with distribution

Lm,n
d= beta(2, n − m),m = 1, . . . , n − 1, then

Lm,n =
m−1∏
k=1

(1 − Lk,n)Lm,n m = 1, . . . , n − 1

(7)

Ln,n = 1 −
n−1∑
m=1

Lm,n =
n−1∏
m=1

(1 − Lk,n)
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is the stick-breaking scheme construction of the size-biased pick vector. Note that Lk,n :=
1 − Lk,n

d= beta(n − k, 2) and that Ln,n can be set to 1: Ln,n ≡ 1. From this well-known
construction (see [15], chapters 9, 9.6; [16, 5]), we obtain that the Lm,n, m = 1, . . . , n are
arranged in stochastically decreasing order. More precisely,

Theorem 5

(i) The law of Lm,n, for m = 1, . . . , n, is characterized by

ELλ
m,n =

m−1∏
k=1

EL λ
k,nELλ

m,n =
m−1∏
k=1

�(n − k + λ)�(n − k + 2)

�(n − k + 2 + λ)�(n − k)
× �(2 + λ)�(2 + n − m)

�(2 + n − m + λ)
.

(ii) Let Bn−m+1,1
d= beta(n − m + 1, 1). Then

Lm,n
d= Bn−m+1,1 × Lm−1,n,m = 2, . . . , n, with independent Bn−m+1,1 and Lm−1,n,m =

2, . . . , n.

(iii) L1,n � · · · � Lm,n � · · · � Ln,n.

Proof. (i) is a direct consequence of the construction, since Lk,n := 1 − Lk,n
d= beta(n −

k, 2), k = 1, . . . ,m − 1,Lm,n
d= beta(2, n − m) are mutually independent. Also, if Bα,β is a

beta(α, β) random variable, α, β > 0, then EBλ
α,β = �(α+λ)�(α+β)

�(α)�(α+β+λ)
is its moment function, the

corresponding expression of ELλ
m,n follows. In particular, it holds ELm,n = 2 (n−m+1)

n(n+1)
, with∑n

m=1 ELm,n = 1.

(iii) being a consequence of (ii), it remains to prove (ii). This can easily be proved by
recurrence, observing first that

E
[
Lλ

2,n

] = E[(1 − L1,n)
λ]E[(L2,n)

λ] = n − 1

q + n − 1
E
[
Lλ

1,n

]
and that n−1

q+n−1 is the moment function of Bn−1,1
d= beta(n − 1, 1). �

Let us now compute the joint distribution of Ln.
To this end, let us first discuss the visiting order of the fragments in the SBP process.

For any permutation (m1, . . . ,mn) of (1, . . . , n), with M1, . . . ,Mp, p = 1, . . . , n, the first p
distinct fragment numbers which have been visited in this SBP sampling process, we have

P(M1 = m1, . . . ,Mp = mp | Sn) =
p−1∏
k=1

Smk,n

1 −∑k
l=1 Sml ,n

Smp,n

so that

P(Mp+1 = mp+1 | Sn,M1 = m1, . . . ,Mp = mp) = Smp,n

1 −∑p

l=1 Sml,n

Smp+1,n.

Clearly, with (n)p = n(n − 1) · · · (n − p + 1), we get

P(M1 = m1, . . . ,Mp = mp) := EP(M1 = m1, . . . ,Mp = mp | Sn) = 1

(n)p

averaging over the partitions Sn: the Sm,n being identically distributed, all sub-sequences
(m1, . . . ,mp) of (m1, . . . ,mn) are equiprobable. The distribution of M1, . . . ,Mp is known
as the Bose–Einstein distribution. Similarly, looking at the fragment lengths in a full SBP
procedure, we have

P(L1,n = Sm1,n, . . . , Ln,n = Smn,n | Sn) =
n−1∏
k=1

Smk,n

1 −∑k
l=1 Sml,n

Smn,n. (8)
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Consider now the joint moment function of the random size-biased pick vector Ln−1 :=
(L1,n, . . . , Ln−1,n). We observe that from (7) and the independence of the Lm,n

E

n−1∏
m=1

Lλm

m,n = E
n−1∏
m=1
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with Lm,n
d= beta(2, n − m),Lm,n

d= beta(n − m, 2),m = 1, . . . , n − 1. (By convention, if
m = n − 1, the exponent λm+1 + · · · + λn−1 in the last product expression is set to zero.)

Also, inverting the transformation given in (7), Lm,n = Lm,n

/(
1 −∑m−1

k=1 Lk,n

)
,m =

1, . . . , n − 1, the joint density of the Lm,n can be found after some elementary algebra using
the mutual independence of Lm,n,m = 1, . . . , n − 1. Putting all these together, we obtain

Theorem 6

(i) The joint moment function of the SBP vector Ln−1 = (L1,n, . . . , Ln−1,n) reads
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(ii) With sm := ∑m
k=1 sk , the joint density of Ln−1 at (s1, . . . , sn−1) ∈ [0, 1]n−1 satisfying

sn−1 < 1, is given by
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Proof

(i) If a random variable X
d= beta(α, β), with X := 1 − X, we have
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Adapting this computation, as Lm,n
d= beta(2, n − m), E

[
Lλm

m,nL
λm+1+···+λn−1
m,n

]
has the

expression displayed inside the product from (9).
(ii) is a direct calculation of the image measure, the Jacobian of the inverse transformation

L.,n → L.,n being 1
/∏n−2

m=1(1 − sm). In this expression, sm :=∑m
k=1 sk, s0 := 0. �

Last, we shall underline an implicit combinatorial identity that will prove useful in the
following.

Lemma 7. For any p ∈ {1, . . . , n − 1}
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Proof. From (8), with p ∈ {1, . . . , n − 1}
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and so
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From (i) of the last theorem 6, this expectation has the displayed expression. �

5. The times separating the discovery of new fragments in the SBP process

In this section, we study the times (sample sizes) needed to discover consecutive new fragments
until they have all been visited. Intuitively, one expects these times to be increasing while
approaching complete exhaustion in the sampling process; it seems indeed harder to discover
a new species when many of them are already known simply because the larger the number
of already observed species is, the larger the probability of visiting one of these (and no
other). The previous considerations on the SBP process will prove useful to achieve this goal.
However, the visiting time to the last fragment deserves special attention and special tools,
discussed in section 6.

Let Kp+1 be the time separating the discovery of the (p + 1)th new fragment from the pth
in the SBP process. Clearly, K1 = 1 as the first throw necessarily leads to the discovery of a
new fragment.

Next, with kp+1 � 1 and any mp+1 �= (m1 �= · · · �= mp) themselves all distinct, we have
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as the event under consideration is realized when kp+1 − 1 trials fail whereas the last trial is a
success. As a result, summing over mp+1
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which is a geometric distribution. Stated differently,
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Averaging over m1 �= · · · �= mp,
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where P(M1 = m1, . . . ,Mp = mp | Sn) is given from the previous section by
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Averaging over the partitions, we find
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with, in particular
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We would like to compute the distribution P(Kp+1 > k). From (10) and the multinomial
identity, we have
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Using lemma 7, we finally obtain the following expressions:

Theorem 8

(i) For p = 0, . . . , n − 2, the distribution of Kp+1 is given by
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(ii) The mean values of Kp+1 increase with p and are given by
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Proof

(i) is a direct application of lemma 7 starting from (11).
(ii) follows also from this lemma. At λ1 = · · · = λp−1 = 0 and λp = −1, we have for all
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So, with p ∈ {1, . . . , n − 1}, we find
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and we can check E(Kp+1) > E(Kp). �

6. The waiting time till the visit to the last fragment

There remains to compute the distribution of Kn which is not supplied by the last theorem 8.
From (iii) of theorem 5, the last interval that remains to be discovered in the SBP process has
a length which is stochastically smallest.

To our purpose, let us note that the following decomposition holds

1 +
n−1∑
p=1

Kp+1 = K+
n (12)

where

K+
n := inf(k : ∀m,Bn,k(m) � 1) � n

is the sample size needed until all fragments have been visited at least once. This variable is
the one of interest in a random version of Feller’s coupon collector problem (see [8], p 48).
Note also that if the event K+

n � k is realized, there are no fragments left undiscovered in a
k-sample of the interval partition Sn.

From Poisson embedding techniques ([12] and the references therein) or from
combinatorial considerations [10], elementary computations show that
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Since E
(
K+

n

∣∣ Sn

) = ∑
k�0 P
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)
, we get the following general expression for

the tail probability due to Flajolet et al and Holst (see [10], theorem 2, p 9, [12]).

Theorem 9. Conditionally given Sn, the distribution of the coupon collector waiting time with
unequal and random probabilities Sm,n is given by
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where [tk]ϕ(t) is the coefficient of tk in the power series expansion of ϕ(t).

Averaging over the partition Sn, we obtain

P
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)
which is the distribution of the random coupon collector problem arising in our random
partition model when the probabilities themselves are random.

Theorem 10. Consider the randomly broken stick model Sn. Then, with k � n
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and
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Proof. We will use the combinatorial identity
n∏

m=1

(1 + xm) = 1 +
n∑

l=1

∑
1�m1<···<ml�n

l∏
j=1

xmj
.

Putting
∑l

j=1 Smj ,n = 1 −∑j �=(1,...,l) Smj ,n, using the above identity, we find
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Recalling that P
(
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) = k![tk]
∏n

m=1[eSm,nt − 1] and noting that f (Sn) :=(∑
j �=(1,...,l) Smj ,n

)k
is a homogeneous function of the Sm,n of degree d = k, (14) follows

from Steutel’s result (see [18], theorem 2, p 237) which states that Ef (S1,n, . . . , Sn,n) =
�(n)

�(n+d)
Ef (T1, . . . , Tn), where T1, . . . , Tn are i.i.d. variables with exponential distribution

of mean 1. �

From theorem 10, (12) and (ii) of theorem 8, the expectation EKn of the time separating
the discovery of the (n − 1)th fragment from the last nth follows directly.

7. Conclusion and perspectives

The following simple sampling problems from finitely randomly broken sticks have been
considered and solved: what is the sample size till the first visit to the smallest fragment of the
partition? Given a sample size, have all fragments been visited or are there any still remaining
to be discovered? In what order are new fragments being discovered and how long should
one wait between the discovery of consecutive new fragments until the list is exhausted?
Although these problems are easy to formulate, the answers turn out to be surprisingly difficult
to derive. The required tools to achieve our task have been introduced and applied to yield new
results. Essentially, some information on the size-biased permutation of the species’ weights
is required.

It would be interesting to ask the same questions for other stick-breaking models, and to
consider the case of a denumerable number of fragments. However, from the sampling point of
view, some questions asked appear meaningless in this enlarged context: for example, asking
for the number of unvisited fragments in a k-sample is an absurd question, together with the
one on the sample size needed to visit the smallest fragment. Rather, in that case, the way the
number of visited fragments grows with the sample size seems to be the right question to ask.
We are currently investigating these kinds of problems.
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[5] Donnelly P 1986 Partition structures, Pòlya urns, the Ewens sampling formula and the age of alleles Theor. Pop.
Biol. 30 271–88

[6] Engen S 1978 Stochastic Abundance Models (Monographs on Applied Probability and Statistics) (London:
Chapman and Hall)

[7] Ewens W J 1972 The sampling theory of selectively neutral alleles Theor. Pop. Biol. 3 87–112
Ewens W J 1972 Theor. Pop. Biol. 3 240
Ewens W J 1972 Theor. Pop. Biol. 3 376

[8] Feller W 1968 An Introduction to Probability Theory and Its Applications 3rd edn vol 1 (New York: Wiley)
[9] Feller W 1971 An Introduction to Probability Theory and Its Applications 2nd edn vol 2 (New York: Wiley)

[10] Flajolet P, Gardy D and Thimonier L 1992 Birthday paradox, coupon collectors, caching algorithms and
self-organizing search Disc. Appl. Math. 39 207–29

[11] Hawkes J 1981 On the asymptotic behaviour of sample spacings Math. Proc. Camb. Phil. Soc. 90 293–303
[12] Holst L 1995 The general birthday problem Random Struct. Algorithms 6 201–8
[13] Huillet T 2002 On the waiting time paradox and related topics Fractals 10 173–88
[14] Kingman J F C 1978 Random partitions in population genetics Proc. R. Soc. A 361 1–20
[15] Kingman J F C 1993 Poisson Processes (Oxford: Clarendon)
[16] Patil G P and Taillie C 1977 Diversity as a concept and its implications for random environments Bull. Int. Stat.

Inst. 4 497–515
[17] Pyke R 1965 Spacings (with discussion) J. R. Stat. Soc. B 27 395–449
[18] Steutel F W 1967 Random division of an interval Statistica Neerlandica 21 231–44
[19] Stevens W L 1939 Solution to a geometrical problem in probability Ann. Eugenics 9 315–20


